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Asymptotic causality 

G. R. SCREATON 
Mathematical Institute, University of Oxford 
MS.  received 25th Xoaember 1968, in reoised form 1st Apri l  1969 

Abstract. For many physical systems it is clear that asymptotic causality must hold 
in some sense, without it being clear whether or not the system is strictly causal. 
In  this paper the simple linear system is considered and it is shown that a quite 
general formulation of asymptotic causality (8) implies that the system is causal. 

Let us consider the situation that arises frequently 
input I ( t )  is converted linearly into an output O(t), in a 
so that 

1 
277 

O(t) = - (F*l ) ( t ) .  

in physical problems, where an 
time-translational invariant way, 

(1) 

In  this convolutional product it will be assumed that F is a tempered distribution and I 
an infinitely differentiable function of fast decrease ( F  E 9'' and I E 9'). The output will 
then be an infinitely differentiable function bounded by a polynomial. A distribution is 
called causal (strictly causal) if it has support [0, CO), for then the output is related to the 
input in a causal way. For some physical systems it can be asserted that asymptotic or 
macro-causality must hold in some sense, without it being clear whether or not strict or 
micro-causality should hold. We have particularly in mind the related problem of asymptotic 
and local commutativity in quantum field theory, which it is hoped to discuss at a later 
date. In  this paper an asymptotic causality condition is formulated and it is shown that, 
despite its apparent weakness, it in fact implies that the system is strictly causal. This 
problem has previously been discussed by Sucher (1959). Making much stronger assump- 
tions than are made here, he has shown that a system that satisfies his asymptotic causality 
condition cannot be finitely acausal (F is  finitely acausal if it has support [a, CO), - CO < a < 0) .  

Before we define asymptotic causality we shall obtain a necessary and sufficient condition 
for F to be causal. If F is a tempered distribution with support [0, CO) ( F  E Y+') ,  then, 
as F is a tempered distribution, there exists a positive integer k such that 

F ( t )  = t"(t) (2) 
with x a distribution in Si2'. From the assumed support property of F we see that the 
support of x is [O,x). I t  has been proved (Screaton 1969, appendix) that for such a 
distribution there exist constants C and L, such that 

for all f E gL2, where D denotes differentiation and (x,f> the action of the linear func- 
tional x on the test function f. Thus 

L m  

I ( F ,  f> 1 < c( Zo I 0 ;ow l2 d t y  (4) 
for allf E 9'. Using 

" 1  m 1 ]t'Dsff12dt =Io l+tZ(ltrDsf12+ ]tTt1DSfj2)dt 
0 
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we see that for some C, N and L 
N L 

/ < F , f ) l < C  2 2 sup jt”D’f1. 
n = o  I=O o < t < m  

On the other hand, if F is a linear functional on Y and (6) holds, then it is continuous and 
has support [0, CO), i.e. F E 9,’. Applying these considerations to the situation in which 
I is converted linearly into 0 in a translational invariant way, we see that a necessary and 
sufficient condition for I and 0 to be related as in (1)) with F a  causal tempered distribution, 
is 

M L 

for some constants C, N and L,  all I E 9’. 
If a system is to be called asymptotically causal, then for each input it must tend to 

behave in a causal way as t+- CO. The relation (7) puts a bound on the behaviour of a 
causal output, in terms of the input. I t  would seem reasonable to take the requirement of 
asymptotic causality to be that, for each input I ,  there exist constants NI,  LI such that 
the ratio of the output to 

XI L ,  

2 2 sup I(t-t’)”D”(t’)l 
n = o  1=0 - a  <i’<t  

be well behaved as t+- CO and that this behaviour be no worse than polynomial. We 
therefore say the following: A system is asymptotically causal if, fop each input I ( t ) ,  apoly- 
nomial PI( t )  and constants N I ,  L, and TI can be-found such that the output O( t )  satisfies 

N, L ,  

;o(t)l <P,(t) 2 2 sup \(t-t’)nDV(t’)j, t < T , .  (8) 

pyt - t ’ )T /  6 I t ’ Q + r ; ,  O>t>t’> - C O  (9) 

n = o  E=O - C G < t , < t  
However, 

and 
r 

= 2 ~ C s ( t - t ’ ) ~ P - S ;  
s = o  

thus (8) is equivalent to 
.VI L ,  

IO(t)I < c, 1 2 sup p m ( t ’ ) j ,  t < TI  (8‘) 
n = o  I = O  - ; c < t ’ < t  

where C,, .NI, LI and TI  are constants depending on I. It should be noted that there is no 
gain in generality obtained by replacing C, by a polynomial in t. 

To establish that F is causal when it is asymptotically causal, it will only be necessary 
to consider a sub-class of inputs 

with 6 real and positive. For this input 

I ( t )  = exp( - at2) 

D’I(t’) = PI,6(t’) exp( - 6f2) 

It’l exp( - W )  I < C,( It/‘+ 1) exp( - 6 P )  

(10) 

(11) 

(12) 

where PI , ,  is a polynomial of degree 1. In  the region 0 > t > t‘ > - CC 

where here and subsequently C, denotes some constant whose value depends on 6. Using 
(1 1) and (12)) we have 

(13) 

I O(t) I < C,( 1 t + 1) exp( - at2); t <  T,, t ,<O (14) 

ltrrDl exp( - I < C,( It1 r + 2  + 1) exp( - at2), O>t>t’> - C O .  

From the asymptotic causality condition in the form (S’) 
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(AT6 is the sum of N I  and L, of (8')). As O(t) is a continuous function and the right-hand 
side of (14) does not vanish, the bound can be extended to any finite region by suitably 
choosing C,. In  particular, we have 

IO(t)I < Cd(jtINd+1)exp(-6t2), t < O .  

O+(t )  = O(t)O(t> 
O _ ( t )  = e( - t )O( t )  

Defining 0 + ( t )  and 0 - (t) by 

and regarding O(t) as a distribution we have 

O(t)  = O+(t ) fO-( t ) .  (17) 
We denote the Fourier and Laplace transforms of a distribution H(t )  by g(() and 8(( + iq), 
respectively, where the Fourier transformf(<) of a test functionf(t) is given by 

and the Laplace transform g(( + iq) is the Fourier transform of e-  "tH(t). Then from (17) 
we see that 

m) = d + ( t ) + d - ( f ) .  (19) 
As 0 ,  are tempered distributions with support [0, i E"), their Laplace transforms O+(w)  
are regular in the half-planes Im w 5 0 respectively, with the 9' boundary values O*(( ) ,  
and are bounded by 

16*(w) /  < c6(1 + / I m  w l - ~ g ) ( l +  \wldvb) (20) 
in their respective domains of regularity, for suitably chosen C,, L, and iW6 (see, for 
example, theorems 2-8, 2-9 and 2-10 of Streater and Wightman 1964). The  bound (15) 
ensures that the Laplace transform of 0- exists for all w and is given by 

0 

6 - ( w )  = -L [ exp(i&) exp( - qt)O(t) dt, w = (+ iq .  (21) 277* - =  
But 

1 0  0 

16-(w)I <-I 277 exp(-7 t )10( t ) Jd t<C6j  - x  (ltI"a+l)exp 

(22) 
If we write 

and observe that 

it follows that the integral (21) is absolutely and uniformly convergent on any compact 
set of the 7's, being bounded by C,( 17 lh'g + 1) exp(y2/4S). Hence 0 - (U)  is an entire function 
and satisfies 

1 6 - ( w ) ~ <  C6(iqIxS+ 1) exp i - fi . (25) 

The Fourier transforms of 0, F and I are related by 

m = W ( E )  (26) 
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on Y.  With the choice (10) of I this becomes 

~ ( 0  = (Id)-'."xp(-fZ)F(~). 46 (27) 

The  functions d;,(w) are regular in the upper half-plane and &) has an analytic continua- 
tion into this region, and so one expects to be able to continue F ( f ) .  We show that 

G ( w )  = (4x6)1'2 exp - { 6 + ( w )  + d-(w) ) ,  r1>0 (28) id 
has the boundary value E(E) : 

lim e([+ ic) = E(6)  on 9. (29) 
E *o+ 

As 6 - ( U )  has the 9' boundary value 6 - (6) from the lower half-plane, we have 
X 

(d-((), h ( 6 ) )  = lim 1 d-(f- ie)h( t )  d6 (30) 
E + O +  - m  

where h E Y.  Since 6 - ( w )  is regular on the real axis, we see that when h has compact 
support (h  E 9) the sign of E in the integrand can be changed: thus 

d-(t) = lim 6-(6+ ie) on 9. 
E -3o+ 

Now, for h E 9, 

The  two limits on the right-hand side are zero, the first because the convergence of 
O*(<+iE) to Oh([) must be uniform on the bounded set of 9 (weak convergence in 9' 
implies strong convergence) and the second because of the continuity of distributions. 
Hence 

2 

lim ~ ( t +  iE) = (4+3)1!2 exp(c)i)(E) 46 = E ( ( )  on 9. (3 3) 
E +o- 

T h e  function d ( w )  has a unique boundary value and is therefore independent of 6. From 
420) and (25) 

The distribution F can be split into the pieces F ,  with support [0, I: CO), so that 

(35) 
F( t )  = F + ( t ) + F - ( t )  
P(6) = p+(6)+p-(O 

,on 9. The Laplace transforms pf ( w )  are regular in the half-planes q 3 0, with Y' boundary 
values p*((), and satisfy the bounds 

I P & J ) ~ < c ( ~ +  iT1-L)(l+ jwI'll), 7 3 0 .  (36) 
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The function @(U)  - E +  ( U )  is regular in the upper half-plane and has p-( ( )  as its boundary 
values on 9. Thus E - ( w )  is an entire function (Streater and Wightman 1964, theorem 
2-16), with G(u) - R + ( w )  providing the analytic continuation into the upper half-plane. 
Using (34) and (36), we see that E -  ( U )  has the following properties : 

(i) .F-(o) is entire; 

(ii) l P - ( w ) l <  C(1 + l y l - L ) ( l  + IuiM), 7 < 0 ;  

(iii) IP-(w)l < C,(I + ~ - L B ) ( I +  ;wl"s) exp - 

(iv) IP-(iq)l< C(I + 171"). 

(ii) is just (36). (iii) follows by choosing C, large enough, L, the maximum of the L, and L 
of (34) and (36), and M ,  as in (34). Using (34) with a fixed 6 (6' say) and noticing that 
E -  ( U )  is regular at the origin, we have (iv) with C chosen large enough and N the maximum 
of .W- L and -V,.. 

The  constraints (i)-(iv) ensure that E - ( w )  is a polynomial. T o  prove this, it only has 
to be shown that E - ( w )  is polynomially bounded. In  the region 77 < - 1 condition (ii) gives 
the polynomial bound 

On the lines (7 = - l), ([ = 0, q> - 1) (ii) and (iv) give polynomial bounds. T o  obtain 
the polynomial bound in the whole region 7 > - 1, the Phragmen-Lindelof theorem will 
be used. 

q > o  all 6; 

l E - ( w ) l <  C(1+ p), q <  -1. (37) 

Above and on the line 7 = 1, condition (iii) gives 

lF'-(w)l< C,(I + ;wIMa) exp (I;;",, - 7 > 1 .  (38) 

By suitably choosing C,, we show that this bound can be extended to the region 7 > - 1. 
A polynomial P,, of degree with no zeros in - 1 6 7 < 1, can be found, so that 

on the lines (7 = k l), ([ = 0,  - 1 < 7 < l), and 

in the strip - 1 < 7 < 1, where L6 is the maximum of the L and L, of (ii) and (iii) respectively. 
The  bound (39), in fact, holds throughout the strip. For let us consider the function 

where a is real. This function is regular within and on the boundary defined by the lines 
(7 = I 1 ; 0 < ( / a  < l), (6 = 0, a ;  - 1 <7 < 1). Its maximum modulus on the boundary is 
less than or equal to li- aiL,, and hence 

Thus, letting l a l - t ~ ,  me have (39) for any w in the strip. Bounding the polynomial by 
a constant times ( I  + 'w IM&)  and using (39), we see that with C, suitably chosen 

lP - (w) i  < C,(I + l w ] " ~ )  exp (442 



Asymptotic causality 441 

From (37) and (iv) we see that a polynomial P independent of 6, whose degree is the 
maximum of M and N ,  with no zeros in 7 2 - 1 can be found, so that l f l - (w)/P(w)l  is less 
than 1 on the lines arg(w+i) = 0, +7i', p.  From (42) we have that f l - ( w ) / P ( w )  is certainly 
of the order exp ( jw + ij2/26) throughout the region 7 2 - 1, i.e. 

arg(w+i) = O,ix,n 

and 

(43) 

As (44) holds for all 6, we can apply the Phragmen-Lindelof theorem in the form given 
by Titchmarsh (1939, 5 5.62) to the regions 0 < arg (w + i) 6 &v, &n < arg ( w  + i) < n'to deduce 
that the bound (43) holds throughout the regions 

From (37) and (45) we see that the entire function E - ( w )  is polynomially bounded 
and must therefore be a polynomial. The inverse Fourier transform of a polynomial is 
the sum of the Dirac delta function and its derivatives (this is just the ambiguity in the 
definition of F*).  I t  follows that F has support [O,co) ,  being the sum of the distribution 
F, with support [0, x) and F -  a distribution with point support at the origin. Thus we 
have proved that, when the input and output of a system are related as in (1) and satisfy 
the asymptotic causality condition (8) or (S'), then the system is in fact causal. 
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